In the case of 3-d harmonic generation, the contribution of the
last two terms in the susceptibility is small, and we will neglect it
in what follows. Assuming that the process is only two-photon-reso-

nant, combination of the expressions under (2.1) gives the following

result:
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where a summation over paths is implicit. Note that although all the
calculations will be done for third harmonic generation, the results
will be independent of the field used in the third step.

In the case of the back-polarization at the fundamental frequency,
the third and fourth terms in the susceptibility are equal respectively
to the first and second terms. Assuming again that the process is only

two-photon-resonant, the expression for the polarization can be written

-28 -




as
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where again a summation over paths is implicit. In this case the
dominant term in the summation over the *-d level is the one where

the 3-d level is the same as the first level. In what follows we

will only keep that term.

The Generated Electric Field in Terms of the Nonlinear Polarization

& @

The relation between polarization and radiatei electric field is

given by the wave equation. Neglecting loss:
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If the polarization is expanded in a set of plane waves, a traveling
wave equation can be written for the complex envelope quantities of

each wave. In one dimension:

aEm 1@mqum

for mode m (2.5)
dz 2

Because of the linearity of the wave equation, the total field is

found by summing the contributions of the individual modes:

i(®wt-k z)I
E(z,t) = Re R (2.6)
2 m
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% The Two-Photon Absorption Probability in Terms of the

Back-Polarization

From energy conservation:

o

2)
< PE = }ynZONw(" (2.7)

where P 1is the back-polarization, N 1is the number density, and
w<“> is the two-photon absorption probability per second. From this

expression an average absorption rate can be calculated:

2) 1 e
WY = - X iim - f PE dt (2.8)
NHD, T | T
20




Often it is more meaningful to talk about the total absorption proba-
bility during a pulse:

« 00

(@) i :
f W=/ dt = - f PE dt (2.9)
N
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L, The Quadratic Kerr Effect in Terms of the Back-Polarization

The in-phase component of the back-polarization gives a contribu-
tion to the index of refraction. For infinite plane waves, this in-

phase component can be written as:

(3) :
= = € X(w)E =
Pin phase 0 (@) (2.10)
where E 1is the amplitude of the wave at frequency ® ., The index

of refraction is then given by (from Maxwell's equations):

) I :
(n -1)Kerr = 5 X () (2.11)

For short pulses, the effect on pulse propagation through the medium

is found by solving the T.W.E.:

OE 1 JE iomPp

— (2.12)
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[ EFFICIENCY OF TWO-PHOTON-RESONANT FREQUENCY CONVERTERS

K, Electric Field With a Discrete Spectrum of Independent Modes

We calculate the tripling efficiency for an incident electric

field of the form:

E(t) = Z B cos [(w) + mw)t - @ ] (2.13)
m

where the phases @m are independent random variables. First we will
calculate the polarization at the 3-d harmonic frequency using (2.2).
From this we can find the generated electric field using the T.W.E.
(2.5). The efficiency is then calculated as the ratio of the power
in the third harmonic field to the power in the fundamental field.

Substituting the expression for the electric field (2.13) in the
expression for the transform of the field (2.1), we find:

iQ -i0
E(w) = E Em e T S(n-ab -mAXD) + e = SOD+“B'*mﬁ“\ (2.14)

M=

m

Substituting this in the expression for the polarization (2.2):
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where
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To incorporate Doppler broadening in the theory we note that, for
an observer traveling with the incident electric field, atoms moving
at different velocities have different apparent resonance frequencies
woe(x) =@, + x . For a Maxwellian velocity distribution, the fre-

quency deviation x has a Gaussian probability density function:

1 _x2/272D
plg) = —
2
2ﬂ7D
where
I - 5 (2:16)
Mc

There are N X p(x) X dx atoms with (apparent) resonance frequencies

between m20 + x and Byy + X + dx . The total polarization is found

by summing over all velocity classes. The result is:

21(1135(:)
P(B)(t) = _—2 X Z EmEn
2ﬂ7D m, n
X {FR(k) cos [(2«»0+mn)t - (opmwn)]
+

FI(k) sin [(ano+mn)t - (cpm+cvn)]}
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where

k = m+n
- =% {2y,
(o, -20_ +x -kAD) e dx
o 20
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-0 20 ) ‘
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0 0 )

The functions FR(k) and Fy (k) are the real and imaginary parts of

; ; . 1 : : z
the plasma dispersion function. > Substituting the expression for

E.j(t\% in (2.17), the polarization can finally be written as:

FR(k\ cos [(3’1\0 + (k +p))t - (f:‘m o+ ';‘»p\ ]

¢

+ FI(k\, sin [(3’“:) + (k +p)lw)t - (gﬂm + Q‘n 4 r;p‘ ] ‘

Using the T.W.E. (2.5), the electric field generated by each term
in the sum (2.13) can now be calculated. The total electric field is
found by summing all these contributions. Assuming the same k-vector

mismatch for all the terms in the sum (which may not be exact at in-

tensities where the Kerr effect becomes important, see Section II-E),
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the T.W.E. for an arbitrary term of the sum is:
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‘ Pm,n,p S = Emhn‘p [FR;k - lkI k)] 1
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Integrating this equation over the length L of the medium:

130 Mok {AKL/ .
E = e % P XM gine (MkL/2 (2.20)
m, 0, p ~ m,n,p

Finally, the total generated field is given by:

= @i
EC)(t) = Re ‘ E E et 3
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Because the phases :im + Q.+ ;p) for different terms of the sum are

independent, the time average value of the square of the electric field
waveform is simply given by one-half the sum of the squares of the am-

plitudes of the terms:

Y D D o
: 2 (30,) “n K L 5
EVY(8)] ) = ————— x sinc” (&kL/2)
1¢ ﬂ?D
, 2 oo 2 S R
X 2 Ep EnEk‘n [FR(k) - FI(k)] (2.22)
o) k,n

(Note that, since terms with different p values have different fre-
quencies, this result is true no matter what the relation is between

the ¢ 's ; hence the third field could be anything). Since the time

i

P
averaged value of the square of the incident field is simply 2 E:/Q 5
P

the efficiency, in the plane wave approximation, is given by: i

(3)42
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1f we define the normalized auto-convolution of the power spectrum of i




the incident field:

P

B e 22
N ; EnEk-n 1 EnEk-n
) = s — ) —— (2.2)
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where IaV is the average intensity of the incident field, this can

be rewritten as:

-

2 (30,) 20 K2 : B S
£ = 2 Oz €3V « gin~ (AL/2) x z G (k) [Fp (k) + F7(k

This expression is very general in that it gives the lineshape of the
two-photon-resonance for any power spectrum with independent modes,
both in the Doppler and the pressure broadened regime. In an arbi-
trary case, (2.25) can be evaluated numerically (see Appendix A). Two
special cases are of particular interest, because they occur often in
practice, and because they also suggest a new way of measuring line-
widths of non-allowed transitions. They are the cases when either
pressure or Doppler broadening dominates, while the mode spacing is
much smaller than and the laser bandwidth is much wider than the atomic
linewidth of the case being considered. We will now derive closed form

expressions for the efficiency in both these cases, assuming a Gaussian




power spectrum for the incident radiation:

)

{

where ® = ({n times

this definition one easily

a.

Pressure broadened regime, /~AO - 9

e
p -4n A0 /B

= E_ e /
)

the F.W.H.M. of the laser spectrum. Using

[

finds, by substitution in (2.24):

o

On resonance,

one finds in this limiting case:

(= k)
Rl 21,
R ,
D \\k.\\ t /
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Substituting (2.: and in the summation over k appearing in
(2.25), we find for this sum:
atedon -2k L= /8
¥ LN e
b3 et *
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Since the laser bandwidth

linewidth,

the exponential in the sum can be set equal to one.

is assumed to be much wider than the atomic

Because




the mode spacing is much less than the linewidth, the sum can be ap-
proximated by an integral. The final result is:

A ) n ¢ F
(Zr1y \‘747‘A.KL-LL. I;,
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T < sin .kLﬁ,‘ (2.7
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which shows an inverse linear dependence on both the laser bandwidth

and the pressure broadened atomic linewidth.

b. Doppler broadened regime, /M - ’p

In this limiting case, on resonance:

FI(k n 0§x
where
kX
X pecssps e ok
J' D
Again we have to evaluate the sum over k appearing in (2.25). Using
(2.27) and (2.31
u k20" [(2/87) 4 *1‘;\111
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Because the laser is assumed to be much wider than the Doppler width,

the term involving the laser width can be neglected in the exponential.
Because the mode spacing is much less than the Doppler width,

can be approximated by an integral.

2

Using (2.

E G(k kR k

k

For the same

2

k

The value of

sult is:

Substituting

and

z

reasons as above, this can be approximated by:
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in this case:

a 55

.2 = 24202 2
2 YTea T Gtk
= ;

sin® (AkL/2) (2.37

e =
705

which shows, similar to the pressure broadened case, an inverse lin-

ear dependence on the laser bandwidth and the Doppler broadened atomic

linewidth.

Remarks

The inverse linear dependence of the efficiency on & and ¥

(2.30), and & and 7. (2.37) can easily be arrived at using simple

D

arguments. Assume that the incident field consists of N modes of
equal amplitude E ., In the pressure broadened regime, the response

at 2o, , and hence the electric field generated by a pair of modes

(myn) 1is proportional to Eg/? . Since the contributions of dif-
ferent pairs have independent phases, powers have to be added. So we
just have to multiply the power for one pair of modes by the number of
pairs. This number can easily be found as follows. If we keep the
mode used in the first perturbation step fixed, then there are /A
(for A < y < & ) possibilities for the mode in the second step. This

can be done using any of the N modes in the first step. Thus the

total power and hence the efficiency is proportional to:

2
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In terms of the average intensity Iav « NE , this can be written as:

2

Vs

PR
h4e)

In the Doppler broadened regime, the atoms can be divided into packets
of width » . All the atoms in one packet are mainly driven by the
same set of modes, while atoms in different packets are driven by in-

dependent sets of modes. Hence in this case the total radiated power

will be proportional to the number of packets, while in the pressure
broadened regime, where all atoms respond identically, it varies as
the square of the total number density. This means that compared to

the other case, the efficiency is down by the number of packets, i.e.:

2 2
o Ia_V, 7_[2 IaV
g AL A EEN

73 7 7D5

Note that in this last derivation the result of the pressure broadened

A

regime was used, which means that it is only valid if A»n < » , not

just A& <y In the exact derivation we did not have to make this

D

stronger assumption. It should be noted however that, if the mode
spacing is larger than the linewidth of individual atoms, we have a
non-homogeneous situation where certain atoms are driven much harder
than others. The result (2.37) gives the efficiency for the total
ensemble of atoms. In using it under non-homogeneous conditions one

should check however whether the response of strongly driven atoms is




CHAPTER IIIL

INFRARED IMAGE UP-CONVERSION IN ALKALI METAL VAPORS

A. INTRODUCTION

The interest in frequency shifting radiation from the IR into the
visible or near UV stems mainly from two factors. First, there are now
available very efficient low-noise detectors of visible radiation such
as the human eye and photomultipliers, whereas most infrared detectors
are inefficient (and expensive) by comparison. A second attractive
feature of this method of detecting infrared is that the up-converter
and the visible detector following it can all operate at room tempera-
ture, whereas the competitive detectors in the infrared commonly oper-
ate between 4.2°K and 7701(.15

In this chapter, infrared imaging using two-photon-resonant fre-
quency converters is discussed in detail. Both passive and active
imaging are considered, but the emphasis is on active imaging. The
reason for this is that a recent study1b has shown that active imaging

-
systems using such an up-converter look attractive when compared to
competing techniques using photoconductive detectors or quantum coun-

ters, but they compare rather poorly with these other techniques for

passive imaging of thermal radiation. The main reason behind this is

_v8-




that the up-converters have to use a pulsed laser for a pump, resulting

in a low duty factor. In the case of active imaging, the IR radiation
itself is pulsed, and this duty factor problem is much less severe.

We will start with a brief discussion of the performance criteria
for passive and active imaging systems. This will be followed by a
description of the various optical systems that can be used with up-
converters. The next section deals with field of view, resolution
and bandwidth. Then follows the main section of this chapter, which
is a detailed study of the efficiency of such up-converters, the
physical processes limiting it, optimization procedures and a com-
parison with crystal up-converters. The last section is a discussion
of the experimental results. It includes a description of the system
that was used to obtain the first images, together with a comparison
between measured and calculated efficiencies.

Whenever possible, theoretical results will be applied to the
example of 2.9% | up-conversion in cesium vapor, using the process
1.0790 p + 1.0790 p + 2.9% y —» 4560 & . The interest in this par-
ticular system stems from the fact that the high power Nd:BeL solid
state laser at 1.0790 p has an accidental two-photon-coincidence with

the 6s-7s transition in cesium.

B, INFRARED IMAGING SYSTEMS

1. Performance Criteria for Imaging Systems

o




a. Passive imaging

In passive imaging, an object is detected by the thermal radiation
it emits at any temperature above absolute zero. Different parts of
the object which are at slightly different temperatufes emit different
amounts of radiation. The sensitivity of a detector or an imaging de-
vice is evidently related to the relative magnitudes of its response
to a change AT , and the random fluctuations in its response due to
various noise processes. Therefore, one (widely used) performance in-
dicator of a thermal detector is the noise-equivalent temperature dif-
ference (NETD), which may be defined as that effective temperature
difference that causes a response equal to the rms noise fluctuations
in the response of the detector, i.e., giving a signal-to-noise ratio
of unity. We will now derive an expression for the NETD.

The number of photons received per second by a detector with area
A and field of view A , looking at an object of emissivity ¢€(})

and temperature T , is given by:

pé /\\ df

N = AXx M X hE/RT (5el)
e -1

In this expression p is a factor that takes into account the response
of the detector for orthogonal polarizations. If both polarizations are
up-converted with the same efficiency, p equals &, 1If only one polar-
ization is up-converted, its value is 1. 1If both polarizations are up-
converted with different efficiencies, which is the case for two-photon-

resonant frequency converters making use of a s to d transition, one




has 1 <p <2 . The dependence of third-order processes on polar-

ization is discussed in detail in Appendix E. Since the bandwidth
of up-converters is narrow compared to the centér frequency of the
up-converted band, the integral in (%.1) can be approximated by the
product of the integrand, evaluated at this center frequency, and the

bandwidth. Thus

pe(X,) Af AAD
i
N X m—— s
hc;\ikT
e -1 A\
i
where li is the wavelength at the center of the band, and Af is

the bandwidth of the up-converter, The number of photons per resolu-
tion element is found by setting the solid angle in this expression
equal to the diffraction angle, i.e., AU li/A . Hence the number

of photons per resolution element is approximately given by

elx.) &
pe(Ar, ) Af

N —————— 3.3
. he/M kT
i

e -1

where the temperature 7T 1is the average temperature of that element.
Starting from this expression, we can derive an expression for the

srive r - : g e 1
NETD. The derivation presented here follows largely Falk and Tiffany.
Adjacent resolution elements of the object have slightly different tem-
peratures, and the "signal'" is given by the difference between the num-
ber of photons received from two adjacent spots with a temperature dif-
ference AT . Consider two such spots, emitting at average rates n

1

and n . The signal received at the input of the up-converter, during




a time t , is then equal to:

For Poisson noise, due to fluctuations in time of

is equal to the square root of the average number

arrival, the noise

of received photons:

From the expressions for the signal and noise at the input, the signal

and noise at the output can be calculated. We

with photon efficiency €

assume up-conversion

followed by detection using a device

PH ’
with efficiency m , both processes being noisefree. Thus:
S = iipEsin e 4
out R p
N = (n, + n.) T . R
out [ 1 °H ; ’ 3
and: .
n, = n
v 3N 1 o - ¢
Cout PH 4 E
n n
i ‘
.
We will use this expression now to calculate the NETD, where the dif-
ference n, - n, is due to a tempera..ve difference. One could also
use this expression, however, to calculate the §/N ratio for detection




of a difference in reflectivity between adjacent spots (which could be

used as a performance criterion for active imaging). Using for 0,

and n, expression (3.3), evaluated at temperature T and T + 21
we find:
|
i pL(Ki> Af hf AT
( ) = — —_ g X T
(8/N) gyt hE /kT pg X X E

\[5_ e =3 KT T

By definition, the NETD is a AT such that the resulting signal-to-

noise ratio at the output of the imaging system equals unity. Hence:

1 :

P hE, /KT e g <~ K
,’L e = kT T

Example:

‘1  pe(y,) a8 |7 /ne )\ /1 )'1

NETD

We will use typical parameters for a Na up-converter, operating

around 9 p in the i — 12 p atmospheric window.
e(x,) = 1
i
r = 3%00%K
oA | em
i
-1
f cm
e - &
PH -
l
p l.2
t 1 usec

— NETD |




b, Active imaging

For the case of active imagingz, where the object is illuminated
using a high power laser and detected by the radiation it reflects to-

ward the up-converter, the NETD is clearly not a useful performance

criterion. One possible application of active imaging might be where

one is trying to detect an object with some finite reflectivity in a

non-reflecting ("dark') background. A reasonable performance crite-
rion for this case is the signal-to-noise ratio for the detection of
the difference between a spot in the '"black" background, and a spot
on the reflecting object, e.g., spots 1 and 2 in Fig. 3. A "good"
S/N ratio would then permit one to tell the shape of the object. We
will use a constant reflectivity Ref for the entire object. 1If
this is not the case, one could use as one possible choice the mini-
mum value of Ref , in which case one would be able to see some de-
tail in the object.

The noise sources to be considered in this case are the shot
noise due to the signal itself, thermal radiation coming from the
object because it has a non-zero temperature, and dark-current noise
in the phototube following the up-converter. We will derive an ex-
pression for the signal-to-noise ratio, and we will also find a lower
limit for the power of the illuminating laser required in order to

make the reflected radiation stronger than the thermal radiation.
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The geometry for active imaging is shown in Fig. 4. We will

assume:

2 )

If we call n the overall system efficiency, we have (Fig. 3 .

S = m min ) M = n -0) X t
Ut { % - n X \ - ) N
N ., . n 1d A G
= 2 ) 4 s
out I 2 b B & :

and
ng
(s/N) = X (nxt) 3.11
ous o, + 0+ 2(i,/e)]
b d’
where
id = dark current
t = integration time
' number of reflected photons per sec
per resolution element on the object E
ny number of thermal photons per sec

per resolution element on the object
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We will now calculate the number of photons reflected by the object
per sec per resolution element, and also the number of thermal pho-
tons per sec per resolution element. If the illuminating laser emits
NL photons per second into a solid angle ;L , then the number of

reflected photons received per second is:

Ref 1 mD°

In this expression D is the diameter of the up-converter, and use

was made of the fact that > ., . If the total number of
upc obj

resolution elements of the up-converter, corresponding to the full

solid angle , is equal to R , then the number of resolution

“upc

elements on the object, which spans a solid angle l , equals
3 : & 5 !
7e 7 4 ~
Rx & /@ . Hence the number of reflected photons per resolu-

o’ upc

tion element (on the object) is:

N 2 /R Ref 1 D'
ng - = N] = T 1
/ 2 X .
R < NU oy 1 r
The total number of thermal photons emitted by the object at tempera-
ture T equals:
D" /]
Ny, sy 8 o Ml .

where J, 1is the number of photons emitted per s~c. per unit area,




per solid angle, per unit bandwidth. Using (3.2), J, 1is given by

€ (X
i
J - e — 15
A ~ he/N kT
2 i
A (e -1
i
This radiation comes also from R xX &L /Q resolution elements, and
0 u
thus the number of photons per resolution element is equal to:
i D
N u
n = J5 Af i o
b R L
By combining (%.1%) and (3.10), we find the minimum number of laser

photons per second required to make the reflected radiation dominate.

The result is:

If the laser power satisfies this condition, the detection is called
signal-shot-noise-limited (neglecting the dark current). If we sub-
stitute (3.135) and (3.106) in the expression for the signal-to-noise

ratio (3.11), and neglect the dark current contribution, we find in

the signal-shot-noise-limited regime:




Example (Cs up-converter at 2.94 u):

) = 1 x 10
u
D = 10 cm
)
R ="
LhL = Hu
Re £ = Aol
n 1
£t = 10 asec
n= G km
A = 2.94
i SLal
af = 100 cm‘-1 (blue filter behind up-converter)
)\ =
€( i) 1
T & 300°K
p = 2
one finds:
~ \ " - oz '1j 1
“S/N'out e 5.5 % I N

To obtain a signal-to-noise ratio of unity,

the required laser power is

2350 kW. Using (5.17), for the reflected radiation to dominate, the




required power is about 200 times less, and thus we are indeed in the

signal-shot-noise-limited regime.

| 2 Optical Systems for Up-Converters

i We will only briefly discuss the various optical systems that can

be used with image up-converters. For a more complete discussion, see

Refs. 16 and 18. Three basically different types of optical systems
1 for up-conversion have been discussedbyAndrews;lI’3 they are illustrated
5 13 0 5 -
In a Type I optical system, the object is imaged in the up-conver-
ter, and the up-converted radiation is then imaged onto a detector. The
! image of a point on the IR object is formed in this case by a spherical

wavefront converging on a point in the up-converter. Up-conversion em-

ploying a Type I optical system is also called up-conversion in image

space.

In a Type II optical system, nearly plane waves from the IR object
| are up-converted, and the up-converted plane waves are imaged onto the
detector.

In a Type III optical system, the object and the up-converter are
placed respectively in the front and back focal plane of a lens. IR
radiation from different object points gives plane waves with different
directions in the up-converter. The up-converter and the detector are
respectively in the front and back focal planes of a second lens, and

this lens transforms every up-converted plane wave into a point in the
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detector plane. Up-conversion employing a Type III optical system is
also called up-conversion in Fourier space.

Because with a Type II system there is no freedom in matching the
incident IR radiation to the area and field of view of the up-converter,
this type is of very limited use. The resolution of a Type I system is
limited below the diffraction limit by the length of the medium, while
this is not the case for a Type III systcm.l In Appendix B it is shown
in detail that the resolution of a Type I11 system is only limited by
diffraction, assuming monochromatic light. The magnification of a
lype III system is also derived there. All types suffer from chromatic
aberration. For a Type III system this is discussed in Appendix C.
According to Ref. 10, this aberration might in principle be corrected
for in a Type 1II system, which would probably be required in the case
of broadband thermal up-conversion. For active imaging chromatic aber-
ration is of little importance since the radiation is very narrowband.
In a Type I system, the output is the product of the IR image and the
square of the pump profile. This poses very severe uniformity problems
on the pump beam for the case of low-contrast imaging (thermal imaging .
In a Type III system, on the other hand, each point of the object gives

rise to a plane wave which is up-converted by the entire pump beam, and

a result the pump beam quality is much less important. For all these

m . ; 1
reasons a Type III system is usually optimal.
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Q. FIELD OF VIEW, RESOLUTION, AND BANDWIDTH. APPLICATION TO THE

2.9 | CESIUM UP-CONVERTER
v

1 Active Imaging

s Field of view

Infrared rays incident on an up-converter at different angles are
up~converted with a different k-vector mismatch, resulting in an angle-
dependent efficiency. Clearly this response should be a '"smooth" func-
tion, without any zeros. There are two possible ways for obtaining a
ripple-free response versus IR angle. A first possibility is to use a
cell that is less than one coherence length long. At the high pres-
sures where one wants to operate the up-converters, this length is very
short, however, typically being only a small fraction of a millimeter.
This is usually impractical, both because of the mechanical problems of
building such a short cell, and because the resulting field of view is
so large that it becomes hard to design a cell with a large enough
physical" field of view. The second possibility is to make the medium
reasonably long (there are also limitations there, as explained in Sec-
tion D), and phasematch over its entire length. We will discuss only
the second case.

The k-~vector mismatch caused by the angle between the IR rays and

the direction of the sum of the two pump vectors is given by:

N (8)




The efficiency varies versus angle according to:

Ak L a ki9‘L
& e sines ==l =" feige == (3.2
2 it
and thus the solid angle of the up-converter (407 points) is given by:
A,
e —
u
L

Note that this solid angle is exactly equal to the maximum solid angle

as allowed by the difference in curvature between the IR and visible

wavefronts in the up-converter, as discussed in Appendix B. By using
: 15 ; .

off-angle phasematching, where a mismatch XML = - 7w is allowed for

zero IR angle, the field of view can be increased by a factor of two,

but in view of the results of Appendix B this may be unacceptable.

b. Methods of phasematching

Three possible techniques for phasematching the up-conversion
process will be discussed. They are inert gas phasematching, self-
phasematching, and phasematching by angle. We will now discuss each
of these techniques in detail.

: 3 i 19 .

Phasematching by adding an inert gas is probably not a useful
technique. The reason is that because of the high pressure ratios re-
quired, the inert gas pressure becomes excessively high at the metal

vapor pressures where one wants to operate the up-converter (on the




order of 10 atmospheres). This leads to a large broadening of the
linewidth of the two-photon transition, nof to mention the practical
problems.

The second method is to select the IR wavelength such that the
medium is self-phasematched. This method is the simplest one, but it
requires an illuminating laser that can be tuned to the phasematching
frequency. We will now derive an expression for the detuning from
the upper level where the process is phasematched, by setting Ak
equal to zero. For colinear waves, the expression for the k-vector

mismatch is:

Nk = k - (Ck + k.)

5 P
0 20 D
S i v

= (n ~1)=-(n -1)—L < (o, 1) = 2

s p d

c c e
The factors (n - 1) in this expression can be evaluated using

s ' 19 ' . 3 .
Sellmeier's equation. ~ Assuming no population in the s level, the

result for the cesium up-converter is:

N 1.4 x 10727

2€ _ch AV

where &b, is in wavenumbers, and only the ©p and 7p doublets were
)
used in the calculation. 1f, because of two-photon absorption, there

is some population in the two-photon-resonant level, it will have only

a small effect on the index of refraction at the pump and the sum
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frequencies, but it will considerably affect the index at the IR, since
the IR frequency has only a small detuning for the transition from the
resonant level to the upper level (7s-7p in cesium). The expression
for the mismatch, including this contribution, is, for the cesium up-
converter:

N 1. x 1077 - 8.4 x107°° x £ - L
Ak = 4 - Q.‘ % 1\' o
ggoch ."X!)5
where
N 3
£ 100 X s _ percentage population 2 Al
il N in the 7s level Sl

Os

The self-phasematching frequency is found by setting X2k equal to zero.

For the cesium up-converter, the result is:

b, = 16.3 -~ 9.7 X £ f[em
“Ph .match

This result says that, as the population of the 7s level is increased,
the phasematching IR frequency will originally increase such that the
detuning from the upper level becomes smaller. At a smaller detuning
the efficiency is higher, but absorption both at the IR and the sum
frequency has to be checked (see Section D). As the fraction f is

increased further, the process will eventually phasematch for negative

detunings, i.e., above the upper level.
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The third technique is more general than the second one in that
it can be used for a range of IR frequencies, but it requires a more
complicated system. It can easily be understood from the diagrams
shown in Fig. ©. If the sum frequency does not come very close to
the upper atomic level, the dominant contribution to the k-vector
mismatch is due to the pump. Since the frequency of the pump is be-
low the first doublet of the metal vapor, it sees an index of refrac-
tion larger than 1, and thus the vector CE; & Ei is longer than the
vector E; . By splitting the pump beam in two beams and recombining
them under a small angle, the mismatch Ak can be made zero. For

small angles ¢ , the mismatch caused by the small angle (29 be-

tween the pump beams equals:

2 @2
M) = —Bx— (3.2
& 2

By adding this term to the expression (3.24), the total mismatch for

the cesium up-converter becomes:

N 1.h x 10772 - 8.4 x 10°2° ¢ _:,.)
< 1

For a given IR frequency or, equivalently, a given detuning 2X&n, |

the angle © can be found which makes this expression zero. The
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result is:

555 8 Wy 1 =5t

N _c 1.2‘ X EO = .
q . X 10 i =
Ph.match
2e Hon A'6))
p
For large detunings “w? , the angle © approaches an asymptotic
value. In Fig. 7 the phasematching angle is plotted versus detuning,

: o =3 P . X
for a number density of 10 cm 3, and for various fractions f

s Resolution

The general expression for the resolution of an up-converter using
a Type III optical system is derived in Appendix B. If we substitute

for the solid angle the result (%3.21), we obtain:

d. Relation between efficiency, resolution, and number density

The efficiency in the phasematched case is proportional to:

®
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Using (3.29), this can be written in terms of the number of resolution

elements, as:

This is a key relation for up-converters. It says that, for a given
efficiency and resolution, the required power is inversely proportional

to the number density of the metal vapor. Thus one wants to operate an

up-converter at as high a pressure as possible (see Section D for lim-

iting effects).
4 e. Bandwidth

] The efficiency depends on the detuning from the upper level in the

following way:

1 kL
<  =—— sine 1 |
N
!
P where Ak is given by (%.27), and also depends on AW . If the de-
!
: tuning is changed by a small amount (&b, from its original value

), , the resulting mismatch is:




